Steroid Ring-c Aromatization with Side-chain Configurational Inversion

By JAMES MENEY, YOUNG-HO KIM, and ROBERT STEVENSON*

(Department of Chemistry, Brandeis University, Waltham, Massachusetts 02154)

and T. N. MARGULIS

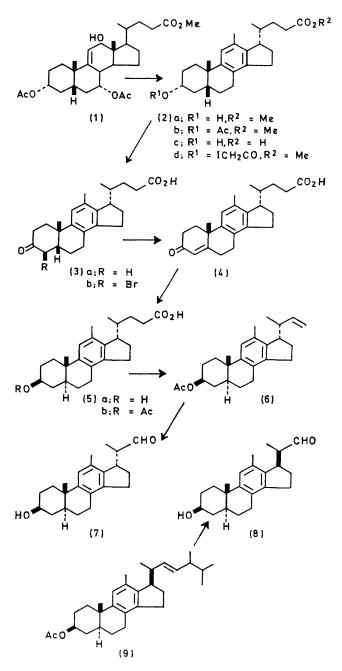
(Department of Chemistry, University of Massachusetts, Boston, Massachusetts)

Summary A derivative of the bile acid, cholic acid, undergoes a molecular rearrangement yielding a 12methyl-18-nor-c-benzenoid steroid with inversion of configuration of the side-chain.

The fungal metabolite, viridin,¹ is the first reported example of a naturally occurring ring-c benzenoid steroid. The conversion of the sterol, ergosterol^{2,3} and the bile acid, cholic acid,⁴ to 12-methyl ring-c benzenoid steroids by molecular rearrangement has been demonstrated and three independent total syntheses of ring-c aromatic steroids have been reported.⁵ We now report a novel pathway by which cholic acid is readily converted into 3α -hydroxy-12methyl-18-nor- 5β , 17α -chola-8, 11, 13-trien-24-oic acid (2c).

When hydrogen chloride was passed through a methanolic solution of the 12-epimeric alcohols (1), readily obtained⁶ by sodium borohydride reduction of methyl 3α , 7α -diacetoxy-12-oxochol-9(11)-enate, there was obtained in 80—90% yield a product for which we suggest the constitution (2a) in which the original 3-acetoxy-group has been hydrolysed, the 7-acetoxy- and 12-hydroxy-groups have been eliminated, the angular methyl group (C-18) has migrated from C-13 to C-12, and the 17β -configuration of the side-chain has been inverted. The n.m.r. spectrum of (2a), $C_{25}H_{36}O_3$, non-crystalline, $\dagger [\alpha]_{\rm p} + 64^{\circ}$, has signals attributable to a

† Difficulties in obtaining 12-methyl-18-nor-c-benzenoid steroids crystalline have been previously noted.² Consistent n.m.r., mass, i.r., and (where informative) u.v. spectra have been recorded for all compounds reported.


highly shielded secondary methyl group ($\delta 0.59$ d., J 6 Hz, C-21), a tertiary methyl group ($\delta 1.17$ s., C-19), a benzylic methyl group ($\delta 2.23$ s, C-18), a methoxycarbonyl group $(\delta 3.68 \text{ s})$, a carbinol proton $(\delta 3.67 \text{ m}, 3\beta-H)$, an aromatic proton ($\delta 6.94$ s, 11-H), and an OH group ($\delta 1.79$, exchanged by D_2O_1 , 3α -OH). Compound (2a) was characterized by formation of the crystalline acetate (2b) $[C_{27}H_{38}O_4, m.p.]$ 124-126°] and by alkaline hydrolysis to the crystalline hydroxy-acid (2c), C₂₄H₃₄O₃, m.p. 81-84°.

Chemical evidence regarding the configuration of the side-chain was sought as follows. Oxidation of the hydroxy-acid (2c) to the keto-acid (3a), $C_{24}H_{32}O_3$, $[\alpha]_D$ + 61°, followed by bromination to the 4β -bromo keto-acid (3b), $C_{24}H_{31}O_3Br$, $[\alpha]_{D} + 107^{\circ}$, and dehydrobromination with lithium chloride yielded the conjugated ketone (4), $C_{24}H_{30}O_3$, $[\alpha]_D + 199^\circ$. Reduction of (4) with lithiumammonia gave the ring A/B-trans hydroxy-acid (5a), $C_{24}H_{34}O_3$, m.p. 200–203°, whose acetate (5b) underwent oxidative decarboxylation with lead tetra-acetate to give the olefin (6), $C_{25}H_{34}O_2$, $[\alpha]_D + 41^\circ$. Hydroxylation of (6) with osmium tetroxide-hydrogen peroxide, followed by periodate cleavage yielded an aldehyde (7), C₂₂H₃₀O₂, $[\alpha]_{\rm p} + 112.5^{\circ}$, characterized as its 2,4-dinitrophenylhydrazone (m.p. 172-174°). Since this differed from the aldehyde (8) obtained from the ergosterol-derived ring-c benzenoid steroid (9) with known 17β -configuration, we considered that (2a) probably possessed the inverted 17α -side-chain.

This has been fully confirmed by a crystal structure analysis of the iodoacetate derivative (2d), C₂₇H₃₇O₄I, m.p. 77–78°. The crystals are monoclinic, space group $P2_1$ with 2 molecules per unit cell. The cell dimensions are $a = 11.236 \pm 0.01, b = 14.35 \pm 0.01, c = 8.117 \pm 0.008 \text{Å},$ $\beta = 90.59 \pm 0.2^{\circ}$. The structure was solved with 608 non-zero independent reflections collected using Cu-K_a X-rays on a Picker full-circle manual diffractometer with scintillation counter and pulse-height analyser. The heavy-atom method revealed the structure although many electron-density maps were necessary because of the centrosymmetric arrangement of iodine atoms. Oxygen atoms were distinguished from carbon atoms solely on chemical grounds. Refinement was accomplished by fullmatrix least-squares calculation. In the final cycles, anisotropic temperature factors were allowed to vary for iodine while carbon and oxygen were refined isotropically. The final value of $R = \Sigma |(|F_0| - |F_c|)| / \Sigma |F_0| = 0.07$.

It may be further concluded that the ring-c benzenoid steroid previously obtained from cholic acid by a more circuitous pathway,⁴ and differing from (2), principally in having a much less shielded 20-methyl group (C-21) ($\delta 0.99$) has the normal 17β -side-chain configuration.

We thank the National Institutes of Health (R.S.) and the National Science Foundation (T.N.M.) for grants.

(Received, October 26th, 1970; Com. 1840.)

- ¹ J. F. Grove, J. Chem. Soc. (C), 1969, 549, and earlier works in this series.
- ² C. F. Hammer, D. S. Savage, J. B. Thomson, and R. Stevenson, Tetrahedron, 1964, 20, 929.
- ³ T. N. Margulis, C. F. Hammer, and R. Stevenson, J. Chem. Soc., 1964, 4396. ⁴ D. Levy and R. Stevenson, Tetrahedron Letters, 1966, 3063.
- ⁵ A. J. Birch and G. S. R. Subba Rao, Tetrahedron Letters, 1967, 857; T. B. Windholz, B. Arison, R. D. Brown, and A. A. Patchett, ibid., p. 3331; A. Chatterjee and B. G. Hazra, Chem. Comm., 1970, 618.
- ⁶ T. Dahl, Y.-H. Kim, D. Levy, and R. Stevenson, J. Chem. Soc. (C), 1969, 2723.